Why Do PTFE and Other Plastic Seals Need Energizers?

Cliff • October 20, 2017

As the operating parameters of industrial technologies and manufacturing processes get more extreme, the need for optimal sealing solutions become that much more important.

Elevated temperatures and pressures, higher speeds, extreme environments, faster gas decompression, and aggressive medias all make sealing more critical. This extends right across static, reciprocating, rotary, and oscillating applications.

This challenge has been met very effectively by the inventive addition of energizers to seals. Energized seals give the ultimate performance in the most demanding conditions and critical applications.

Spring or o-ring energizers can extend the normal limits of PTFE and plastic materials to deliver durable ultra-tight sealing capability. Here’s a rundown of how energizers work and how they can elevate your next sealing challenge.

How Energizers Work

PTFE has highly effective physical characteristics for seals, including low friction, heat tolerance, and chemical inertness. However, PTFE also has limited flexibility and elasticity.

Cantilever spring seal

The addition of a spring or o-ring behind a PTFE seal lip adds a persistent ‘springy force’ or ‘energy’ to press the lip against a metal surface such as a rod or cylinder.

Canted coil seal

When a seal is installed into a gland/cavity, the seal lip and spring (or o-ring) are compressed radially – providing a resilient pressure against contacting surfaces. This creates a tight and consistent seal, preventing leakage of fluid or gases.

Channel seal – piston

Benefits of Energizers

The resilient pressure of an energizer compensates for and overcomes several practical problems, including the following:

Lip pressure

Even after the lip material wears down over time, the energizer continues to push the lip tightly – otherwise the seal would become loose and leaky.

Adaption to deformation

With deformation of metal components contacting a seal (rods, shafts, cylinders, housings), energized lips adaptably fit around ‘humps and hollows’ to maintain sealing.

Adaption to misalignment

When components are misaligned, such as with eccentric deflection, energized lips dynamically move in and out to maintain close contact.

Picking up the slack

Manufacturing tolerances and clearances are not critical, as energized lips can ‘take up the slack.’ Thermal expansion and contraction can be likewise accommodated

Optimal Performance at All Pressures

The radial pressure maintained by a spring or o-ring keeps sealing lips in contact with mating surfaces even before fluid or gas pressure is applied, providing good low pressure sealing capability.

When system pressure is applied, energizer action is intensified – increasing the force on lips to make a tighter seal. The radial pressure is always higher than the pressure of the fluid or gas to be sealed.

Energizer Options to Meet Your Needs

Eclipse offers a wide range of high-performance spring and o-ring-energized seals to meet rigorous demands. Contact us to find out how energized seals can cost-effectively serve your critical applications.

By Doug Montgomery July 22, 2025
See how Eclipse solved a low-torque, deep-sea sealing challenge for AUVs with a custom spring-energized seal and EH042 thermoplastic elastomer.
Compare canted coil, cantilever, and helical springs to find the right energizer for your PTFE seal.
By Doug Montgomery June 24, 2025
Aside from ball valve seats or non-contact labyrinth seals, PTFE is rarely used without a secondary energizer. This is due to PTFE’s inelastic nature. Unlike urethanes or elastomers which possess an inherent springiness, PTFE is often considered an “unalive” material. Much like a lump of clay, it will not bounce back once deformed. Especially in dynamic applications, this is not a desirable quality. Fortunately, with the addition of a spring or elastomer energizer, all of PTFE’s excellent attributes can be fully exploited in terms of sealing. Much like the rest of the seal industry, Eclipse utilizes three metallic spring energizer types for the seals we manufacture. Canted Coil, Cantilever V-Spring, and Helical. While each spring type ultimately accomplishes the same task, energizing a PTFE or polymer seal jacket, we’ll see that each type has unique properties better suited to certain applications.  Figure 1 below shows generalized load versus deflection curves for the three spring types. As you can see, each one is quite a bit different, favoring distinct circumstances and applications. Though, we’ll also find out load curves are not only deciding factor when choosing a spring.
By Doug Montgomery May 28, 2025
Explore the innovation behind Eclipse’s polymer superfinishing technique that enabled high-performance PTFE seals to meet extreme hydrogen leakage and durability requirements in cryogenic aerospace applications.
By Doug Montgomery April 17, 2025
Discover how Eclipse Engineering optimized seal design for high-pressure CO₂ extraction, addressing extrusion gaps and wear ring exposure challenges.